Genetic improvement of Sycamore
(Acer pseudoplatanus) and
ash (Fraxinus excelsior) in Ireland

Dr. Gerry Douglas

Teagasc, Agriculture and Food Development Authority
Kinsealy Research Centre,
Malahide Rd. Dublin 17, Ireland

Context for genetic improvement of broadleaves

- Afforestation-- importance
- Genetic resources available
- Genetic improvement -- Sycamore and Ash
 (Partners: Coillte & the UK)
- Development of clonal lines / varieties of Ash
Afforestation environment in Ireland

- Generous financial supports

Grants & annual Premia (Euros)

<table>
<thead>
<tr>
<th>Species</th>
<th>Establishment Grant / ha</th>
<th>Annual Premium ha /p.a. > 6ha (20 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak</td>
<td>6920</td>
<td>559</td>
</tr>
<tr>
<td>Ash & Syc</td>
<td>5199</td>
<td>522</td>
</tr>
<tr>
<td>Conifer</td>
<td>3573</td>
<td>464</td>
</tr>
</tbody>
</table>

Relative importance of broadleaves & conifers in Ireland

<table>
<thead>
<tr>
<th></th>
<th>% by species</th>
<th>Annual plant needs (x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>46</td>
<td>4.0</td>
</tr>
<tr>
<td>Oak</td>
<td>21</td>
<td>3.0</td>
</tr>
<tr>
<td>Alder</td>
<td>20</td>
<td>5.5</td>
</tr>
<tr>
<td>Sycamore</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Beech</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td>Conifers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitka Spruce</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>Others</td>
<td>35</td>
<td>18</td>
</tr>
</tbody>
</table>
3. Genetic improvement -- Sycamore and Ash

Teagasc collaboration with:
• Coillte our largest forestry semi-state company
• British and Irish Hardwood improvement programme (BIHIP) http://www.bihip.org/ species groups ash, sycamore, birch, oak chestnut, cherry

Aim:
provide genetically improved forest reproductive material for the nursery sector

Operational basis:

Ground-up approach-- participation of landowners

Establishing:
• Operational seed stands
• Conservation collections of selected material (primary grafts)
• Clonal seed orchards (regions of provenance based)
• Breeding seedling orchards (regions of provenance based)
• Testing viability of clonal material

** Genetic resources available in Ireland

<table>
<thead>
<tr>
<th>Species</th>
<th>Seed stands (ha)</th>
<th>Seed Orchards (ha)</th>
<th>Seed Orchard estimated need (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>154</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>Sycamore</td>
<td>7</td>
<td>0.6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea sitchensis</td>
</tr>
<tr>
<td>Picea abies</td>
</tr>
<tr>
<td>Larix kaempferi</td>
</tr>
<tr>
<td>Larix x eurolepis</td>
</tr>
<tr>
<td>Pinus contorta</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
</tr>
</tbody>
</table>

** COFORD ‘Sustaining and developing Ireland’s forest genetic resources’
3. Genetic improvement – Sycamore

Bolton Estate, UK
- Age 60
- Thinned 5 times
- Pruned
- Yield Class: 10-12
- Mean dbh: 60 cm
- Value
 – approx 45,000 Euro/ha

Problem:-- Grey squirrel

3. Genetic improvement – Sycamore

Aims:
- 10 seed stands (3-active)
- 150 selected trees
- Conservation collection
- 3 clonal Seed orchards

Scion collection for clonal seed orchards by shooting
Scions:
6-15 cms long
Annual growth
1.0 - 2.0 cm. per year

Graft viability of Primary grafts of selected sycamores - 2008

![Graft viability chart showing 97 viable genotypes and 91 viable grafts.](image)
Graft viability of Secondary grafts of selected sycamores

<table>
<thead>
<tr>
<th>Scions</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. grafted</td>
<td>No. viable</td>
</tr>
<tr>
<td>282</td>
<td>118</td>
</tr>
<tr>
<td>No. genotypes</td>
<td>No. viable</td>
</tr>
<tr>
<td>47</td>
<td>44</td>
</tr>
</tbody>
</table>

One year old grafted plants

Conservation collection

Material is being bulked up to generate Seed Orchards
3. Genetic improvement – Ash

Aims:

-- Testing European provenances
-- Establishment of sufficient Seed Orchards (10 ha)
-- Development of vegetative propagation methods
 produce material for testing and development of polyclonal varieties

Ash- --Testing European provenances

-- Material grown from 36 European regions (provenances)
-- sites in Ireland (replicated in UK, Germany, France, Belgium, Italy)
--- Identify good & bad provenances
-- influences of environmental / climate effects
36 European ash provenances (core of 30 provenances)
- Rootrainer grown plants
- Planted May 2005 & 2007 (2 sites)
- 108 plants / provenance (36 trees/plot) of 3 replications
- Height & stem diameter taken after planting
- Trees are well established

Ash -- Development of vegetative propagation methods – large scale
-- material for testing and
-- ash variety development

Initiation of cultures 2008:

<table>
<thead>
<tr>
<th>No. Clones initiated</th>
<th>No. viable at first culture</th>
<th>No. viable at 2nd culture</th>
<th>No. clones micropropagating</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>44</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>

** buds collected from grafted plants for micropropagation**
Viable ash shoot cultures

Medium: (mg/L)
M9 = MS : BA 5.5; TDZ 0.55, IBA 0.2
QRC = WPM with 3.0 g/L charcoal.

Micropropagation cycle
Spontaneous Rooting
-- indicates rejuvenation

Weaning of micropropagated ash
Planted as stoolbeds / hedges

Cutting production in hedges
Hedges of ash clones at Teagasc, Kinsealy

Propagating ash from cuttings from hedges of micropropagated plants

Warm bench 20°C+ plastic
Rooting in cuttings from micropropagated ash

Rooting
2 -3wks.

3 months

Plants grown in Rootrainers

Rooting in cuttings from hedges

3 successive crops in May, June & July

![Bar graph showing rooting percentage for different clones and months.](chart.png)
Rooting in cuttings from hedges of ash
12 clones

- Selected Ash clone
- Rooting (%)
- 1/54
- 77/27
- JK 47
- I/54
- F5
- M 72
- T1/27
- R 29
- 77/5
- 51/12
- M 72

400 rooted / m²:
: 4 cutting crops / yr = 1600 rooted / yr / m²

400 rooted / m²:
: 4 cutting crops / yr = 1600 rooted / yr / m²

glasshouse of 200 m² = 320,000 rooted ash plants / yr.
Conclusions:

- More research needed to improve the culture initiation stage for ash
- Clonal seeds orchards of ash and sycamore are planned
- Vegetative propagation system for ash is viable
- Field testing of ash clones indicates conformity
- Clonal field trials are planned
Thanks to:
Coillte
British & Irish Hardwood Improvement Programme (BIHIP)
European colleagues EC- former projects
COFORD (national funds)

Colleagues:
John Mc Namara
Sean Egan
P. Doody
Improving culture initiation:
- Flushing stage is most responsive
- Summer dormant buds not responsive
- Stimulation of secondary flushing by defoliation

Cutting propagation of ash:
- Stoolbeds
- 3 crops of cuttings / year
- High rooting rates