Birch - properties and utilisation

Henrik Heräjärvi
Finnish Forest Research Institute Metla
Contents

1. Introduction
2. Properties
3. Current end uses
4. Past and current research projects (wood technology)
5. Research needs
BIRCH, species

• Ca. 40 Betula species are known
• Deciduous hardwoods
• Two industrially utilised species in Europe
 • Silver birch, Betula pendula Roth.
 • European white birch, Betula pubescens Ehrh.
BIRCH, tree appearance

- Maximum height ca. 30 m
- Maximum dbh for forest trees ca. 40 cm
- Volume of grown-up trees 0.5-1.0 m³
- Saw log percentage approximately 40-60
 - Defects causing rejecting log-sized timber into pulpwood include: stem form (sweep, crooks, forks), heart rot and large/vertical branches
 - Silver birch has better stem form, growth and final cutting size than white birch => silver birch makes up the majority of logs used by the wood product industries
- Birch is a popular species not only in forestry but also in urban environment improving the landscape as well as the biological diversity
Species differences

• Silver birch grows predominantly on mineral soils, whereas white birch occupies both mineral soils and peatlands

• Generally, silver birch represents more desirable quality attributes:
 • Larger achievable stem size
 • Straighter stem form
 • Growth rate even two times higher
 • Slightly higher wood density => slightly better mechanical properties
 • Natural deterioration starts at later age

• No morphological or physiological differences of practical relevance exist between the species

=> identical end uses
BIRCH, supply in Finland

- White and silver birch are, respectively, the third and fourth most abundant tree species in Finland, total volume 316 Million m³
- Annual increment ca. 14 Million m³
- Annual cuttings ca. 9 Million m³
- White birch grows practically throughout the country, silver birch south from 65° N.L.
- Ca. 90% of saw and veneer logs are purchased from the “lake area” in central Finland
- The same species grow practically throughout Northern and Central Europe
BIRCH, harvesting

- Nowadays most of the timber is harvested mechanically
- The best veneer and plywood logs are still harvested using manual cutting in order to avoid defects caused by the delimming blades and rollers of the harvester grapple
Timber

- Previously, only logs with diameter more than 18 cm were used for production of knot free lumber
- Nowadays the markets approve sound knotted products => smaller logs are sawn down to approximately 14 cm top diameter
BIRCH, wood properties

• Diffuse porous hardwood
• Wood material naturally light-coloured, often slightly yellowish after drying
• Relatively easy to saw, veneer, carve, plane, turn, nail, screw, paint, varnish and glue
• Appropriate species for heat-treatment
 • New potential end-uses
• Reaction wood (tension wood) is common => challenges in lumber drying
• Birch is susceptible to colour defects caused by a stem miner *Phytobia betulae*
• Actual heartwood does not exist
• Wood material near the pith is often darkened by decay, when the age of the tree exceeds ca. 70-90 years
BIRCH, wood properties

- Wood density clearly increases from the pith to the surface and slightly decreases from the stump upwards

- Bending strength, stiffness and most of the other mechanical properties vary similarly in comparison to the density

- Ca. 1±0.5 mm long fibres (beech: 1±0.3) build up 75% (40%), vessels 18% (40%) and rays 7% (16%) of the total tree volume

- Cellulose content of birch wood material 50±5% (beech: 40±5), hemicellulose content 25±2% (21±4), lignin content 23±3% (16±4)
Within-stem density profile

Betula pendula

Stump height

Upper heights

COST E42, Thessaloniki 2005
Brinell hardness

COST E42, Thessaloniki 2005
Properties, beech vs. birch

<table>
<thead>
<tr>
<th>Property</th>
<th>Beech</th>
<th>Birch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min-average-max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic density (kg/m³)</td>
<td>490-580-880</td>
<td>460-500-800</td>
</tr>
<tr>
<td>Brinell hardness (MPa) ⊥</td>
<td>…34…</td>
<td>20-22-49</td>
</tr>
<tr>
<td>Modulus of elasticity (GPa) II</td>
<td>…16…</td>
<td>10-14-20</td>
</tr>
<tr>
<td>Modulus of rupture (MPa) II</td>
<td>74-123-210</td>
<td>75-110-150</td>
</tr>
<tr>
<td>Shrinkage from FSP to dry (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Radial</td>
<td>4-6</td>
<td>5</td>
</tr>
<tr>
<td>Tangential</td>
<td>9-12</td>
<td>8</td>
</tr>
<tr>
<td>Volumetric</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

COST E42, Thessaloniki 2005
BIRCH, wood material

Sawn wood, A-quality

COST E42, Thessaloniki 2005
BIRCH, wood material

Sawn wood, B-quality

COST E42, Thessaloniki 2005
BIRCH, wood material

Birch veneers, rotary cut
BIRCH, wood material, specialities

Flame birch veneer, rotary cut

Curly birch veneer, rotary cut

COST E42, Thessaloniki 2005
BIRCH, utilisation

- Some 2/3 of the harvested birch is used in chemical pulping, mechanical pulping soon possible
- Wood product industries use ca. 1.3 million m³ of high-quality birch logs annually
 - Plywood and veneer industries ca. 1.1 million m³
 - Saw mills 0.25-0.3 million m³
- Most of the sawn wood is used in furniture and cabinetry manufacturing and floorings
- Other end uses for birch: particle board industry, firewood, xylitol, household equipment, birch bark handicrafts, sap beverages, sauna equipment…

Bath whisk

COST E42, Thessaloniki 2005
Past and current research projects at Metla

• Biology of birch fly *Phytobia betulae* 1996-2000 (Tiina Ylioja)
• Silver birch wood structure and chemistry, drying discolouration 1995-2001 (Riikka Piispanen)
• Prediction of growth and quality of birch 1998-2002 (Pentti Niemistö)
• Mature birch as a raw material for sawmilling and further processing 1998-2002 (Henrik Heräjärvi)
• Thinning birch as a raw material for sawmilling and further processing 2000-2003 (Jari Lindblad)
• Diversification of hardwood utilisation 2002-2006 (Heräjärvi)
 • Mature birch (wood material studies)
 • Imported birch (project under preparation)
 • Birch pruning, wood quality and work feasibility analysis
• Growing high-quality silver and curly birch 2004-2006 (Risto Hagqvist, Niemistö, Heräjärvi)

More information: Henrik Heräjärvi, www.metla.fi
Past and current research projects, Other institutions

- Influence of site, felling season and storing time on the discolouration and dimensional changes of birch lumber during drying, 1998-2001 (Katri Luostarinen, University of Joensuu)
- Quality of dried birch wood from cultivated forests, 1999-2001 (Veikko Möttönen, University of Joensuu)
- Bleaching and machining of birch veneers, 2002-2003 (Möttönen, University of Joensuu)
- Further processing and final products of domestic birch, aspen and alder, 1998-2001 (Jari Kivistö, University of Helsinki)
- Drying of hardwood lumber, 2001-2004 (Kivistö, University of Helsinki)
Research needs

Current and prospective research needs?

- Improving the quality of current and future growing stock by silviculture and tree breeding
 - Stem form, branchiness, decay resistance
- Protection of seedlings from animal damages (esp. elk)
- Improving the quality of dried lumber
 - Discolouration, deformation, fracture behaviour
- Wood modification
 - Heat treatment
 - Steam bending
 - Compressing and other surface hardness improving treatments
 - Impregnation (furfuryl alcohol, etc.)
 - Wood-based composites made of birch
- ?

COST E42, Thessaloniki 2005
Contact

Henrik Heräjärvi

Finnish Forest Research Institute
Joensuu Research Centre
P.O. Box 68
FIN-80101 Joensuu, Finland

Tel. +358 10 211 3037
henrik.herajarvi@metla.fi
www.metla.fi